前沿科技创业的驱动者

这个仿生耳朵可以收听你最喜爱的广播

[摘要]仿生假体的发展令人着迷,它已从一般假体耳朵跳跃到了仿生耳朵。

123

现在,3D打印技术和电子设备的整合可以让研究人员为饱受各种残疾折磨的人开发个性化的假体。

例如,在以前,小耳畸形(即外耳发育不全)的治疗方法是取用病人一小段肋骨或利用类似聚苯乙烯泡沫塑料的材料来制造新的外耳。

但是,相对于3D打印技术来说,这种方法打造的假体质量不高,而且对于大多数患者来说,这种手术也没有必要。在大多数情况下,患有小耳畸形的孩子往往有功能正常的内耳,但是由于外耳发育不全,他们仍然存在听力方面的障碍。

尽管质量不高,但是假体耳朵的确可以改善他们的听力。而3D打印技术则可以为病人量身定做塑料假体,完美契合病人畸形的耳朵。

随着3D打印技术拓展到生物打印领域,研究人员现在已能够利用细胞,而不是塑料,来打印“仿生假体”了。研究人员利用生物支架来培育软体,然后利用它们来打造假体。这种假体更像是有生命的东西。

这种假体移植到病人身上,就能够充当新的外耳了。

随着3D生物打印技术的进一步发展,研究人员将能够利用病人自己的细胞来培育软体,以减少移植器官遭到排斥的几率。

仿生假体的发展令人着迷,它已从一般假体耳朵跳跃到了仿生耳朵。而3D生物打印的仿生耳朵的功能实际上比人的正常耳朵的功能还强大。

普林斯顿大学的研究人员将3D生物打印技术与电子设备结合起来,利用软体组织开发出了全功能的耳朵,它可以接收到到正常人听力范围之外的信号。

为了解决人的耳朵的复杂结构,研究人员利用3D生物打印技术将水凝胶支架上的软体打印成耳朵器官。与此同时,水凝胶支架上添加的银纳米颗粒则会形成接收信号的天线。

尽管在融合细胞组织和电子设备方面不可避免会出现一些问题,例如机械学和热学方面的问题,但是这个实验算得上是成功的,因为它的主要关注点是找到可行的方法,让电子设备和细胞组织结合形成功能齐全的器官。

这种仿生耳朵能够接受正常人听力范围内的音频。对于超出人类听力范围的频率,这种仿生耳朵能够将它们转变成人类可以接收的频率,这一点很像收音机。

这个实验的成功为仿生技术的蓬勃发展奠定了基础。仿生技术可以打造超过人体正常功能的器官。

这方面的进步已吸引了美国国立卫生研究院(National Institutes of Health)的注意,该机构已赞助了243万美元资金给普林斯顿大学研究团队的首席工程师迈克尔•麦卡尔平(Michael McAlpine)。

这名科学家和他的同事将会在下一步获得什么成果呢?让我们拭目以待吧。

英文原文:

For a while now, the combination of 3D printing and electronics have allowed researchers to develop custom prosthetics for individuals afflicted with various disabilities.

For example, it used to be that one of the treatments for microtia, the underdevelopment of the external ear, required either harvesting a piece of the patient’s rib or using a Styrofoam-like material to be constructed into the new external ear.

Interested in tech, huh?

Don’t miss our biggest TNW Conference yet!
Join us May 26 & 27 in Amsterdam.

Learn more

Compared to 3D printing, the prosthetics were not of high quality and the surgery seemed unnecessary to most. Children afflicted with microtia most commonly have a functioning inner ear but because of the underdevelopment of their outer ear, they still have hearing difficulties.

Prosthetics, however, can improve their hearing and 3D printing can create custom plastic prosthetics for the patient that can fit right over the afflicted ear.

As 3D printing has expanded into the bioprinting space, researchers are now starting to be able to develop “living prosthetics” made of cells rather than plastic. Prosthetics have become more life-like by using a biological scaffold onto which cartilage will grow.

The prosthetic can then be transplanted onto the patient where it will function as a new outer ear.

With further advancement in 3D bioprinting, a patient’s own cells can be used for the development of the cartilage in order to reduce the chances that the transplant is rejected. In the video below, Lawrence Bonassar, associate professor of biomedical engineering at Cornell University, discusses how to create a living prosthetic ear.

This fascinating development in living prosthetics has just jumped to the next level, moving from a prosthetic ear to a bionic ear – a 3D bioprinted prosthetic that actually has the ability to outperform human ears.

By combining 3D bioprinting and electronics, researchers at Princeton have developed a fully functional ear made of cartilaginous tissue that candetect signals outside of the normal human hearing range.

To overcome the complex structure of the ear, researchers used 3D bioprinting to build the organ out of cartilage on a hydrogel scaffolding layer by layer. The simultaneous incorporation of silver nanoparticles on the hydrogel scaffold formed the antennae.

 

Image Credit: Frank Wojciechowski

Despite some expected complications with the incorporation of tissue and electronics, especially from a mechanical and thermal standpoint, the endeavor was a success, since a primary focus of the experiment was to develop possible methods for the assimilation of electronics and tissue into a fully functioning organ.

The bionic ear has the ability to receive audio frequencies within the human hearing range. As for frequencies outside of human hearing ranges, the device can convert the frequencies into those perceivable by humans, much like a radio.

The success of this experiment is leading the way in the emergence of bionics, which offers the ability to exceed the functional limitations of conventional organs in the human body.

These efforts have attracted the attention of the National Institutes of Health (NIH), which awarded a $2.43M grant to Michael McAlpine, the lead engineer of the Princeton team.

It’ll be fascinating to see what he and his fellow scientists will come up with next.

分享到:

相关推荐

  • 科大讯飞2

    为什么他们把科大讯飞选为年度企业?

      【导语】它是一只会玩黑科技的低调独角兽,一心苦练人工智能内功。语音和语言是它的两大杀手锏,玩语音输入,玩语音翻译,玩体感输入,玩万物互联,教育、家居、医疗、客服、车载、机器人领域无不有它紧急的身影。它的雄心是“让机器能听会说”到“让机器能理解会思考”,让人工智能像水和电一...

  • 123

    这个仿生耳朵可以收听你最喜爱的广播

    [摘要]仿生假体的发展令人着迷,它已从一般假体耳朵跳跃到了仿生耳朵。 现在,3D打印技术和电子设备的整合可以让研究人员为饱受各种残疾折磨的人开发个性化的假体。 例如,在以前,小耳畸形(即外耳发育不全)的治疗方法是取用病人一小段肋骨或利用类似聚苯乙烯泡沫塑料的材料来制造新的外耳。 ...

  • 123

    这个仿生耳朵可以收听你最喜爱的广播

    [摘要]仿生假体的发展令人着迷,它已从一般假体耳朵跳跃到了仿生耳朵。 现在,3D打印技术和电子设备的整合可以让研究人员为饱受各种残疾折磨的人开发个性化的假体。 例如,在以前,小耳畸形(即外耳发育不全)的治疗方法是取用病人一小段肋骨或利用类似聚苯乙烯泡沫塑料的材料来制造新的外耳。 ...

  • 123

    这个仿生耳朵可以收听你最喜爱的广播

    [摘要]仿生假体的发展令人着迷,它已从一般假体耳朵跳跃到了仿生耳朵。 现在,3D打印技术和电子设备的整合可以让研究人员为饱受各种残疾折磨的人开发个性化的假体。 例如,在以前,小耳畸形(即外耳发育不全)的治疗方法是取用病人一小段肋骨或利用类似聚苯乙烯泡沫塑料的材料来制造新的外耳。 ...

  • 123

    这个仿生耳朵可以收听你最喜爱的广播

    [摘要]仿生假体的发展令人着迷,它已从一般假体耳朵跳跃到了仿生耳朵。 现在,3D打印技术和电子设备的整合可以让研究人员为饱受各种残疾折磨的人开发个性化的假体。 例如,在以前,小耳畸形(即外耳发育不全)的治疗方法是取用病人一小段肋骨或利用类似聚苯乙烯泡沫塑料的材料来制造新的外耳。 ...

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

SME 前沿科技创业的驱动者